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Abstract

Segmentation of retinal blood vessels is a very important diagnostic procedure in oph-
thalmology. Segmenting blood vessels in the presence of pathological lesions is a major
challenge. In this paper, an innovative approach to segment the retinal blood vessel in the
presence of pathology is proposed. The method combines both supervised and unsuper-
vised approaches in the retinal imaging context. Two innovative descriptors named local
Haar pattern and modified speeded up robust features are also proposed. Experiments are
conducted on three publicly available datasets named: DRIVE, STARE and CHASE DB1,
and the proposed method has been compared against the state-of-the-art methods. The
proposed method is found about 1% more accurate than the best performing supervised
method and 2% more accurate than the state-of-the-art Nguyen et al.’s method.

1 INTRODUCTION

Retinal blood vessel segmentation is a fundamental step in sev-
eral retinal image analysis tasks. In automated detection of oph-
thalmic diseases, retinal blood vessels are typically segmented
and eliminated in the pre-processing stage [1] so that it does not
interfere with pathologies. Blood vessels are considered more
reliable than other features when it comes to registering retinal
images collected from different viewpoints or at different sites
[2–6]. Retinal vessel segmentation and delineation of morpho-
logical attributes of retinal blood vessels, such as length, width,
tortuosity and/or branching pattern and angles are utilized for
diagnosis, screening, treatment and evaluation of various cardio-
vascular and ophthalmologic diseases such as diabetes, hyper-
tension, arteriosclerosis and choroidal neovascularization [7].
The automatic generation of retinal maps has been used for
optic disk identification and fovea localization. Retinal vascu-
lar tree is found to be unique for each individual and is used
for biometric identification [7]. Figure 1 shows a typical colour
fundus photo and its manual segmentation of blood vessels.

Manual segmentation of retinal blood vessels is a long and
tedious task which also requires training and skill. It is com-
monly accepted by the medical community that automatic quan-
tification of retinal vessels is the first step in the development
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of a computer-assisted diagnostic system for ophthalmic disor-
ders. A large number of algorithms and techniques have been
published relating to the segmentation of retinal blood vessels
over the last two decades. Still, there are challenges to address.
Some of the important challenges are listed below [9]:

(i) Segmenting retinal blood vessels in the presence of central
vessel reflex.

(ii) Segmenting blood vessels presenting in crossover and
bifurcation regions.

(iii) Segmenting the merging of close vessels.
(iv) Segmenting the small and thin vessels.
(v) Segmenting the blood vessels in the pathological region

(dark lesion and bright legion).

The recently proposed method by Nguyen et al. [9] address
many of these challenges quite efficiently. However, it still
lacks in accurately segmenting blood vessels in the presence of
pathology. From that perspective, in this work, we aim to aug-
ment the method proposed by Nguyen et al. [9], so that blood
vessels can be detected more accurately even with the pres-
ence of pathology. The proposed segmentation incorporates
robust feature description and supervised learning steps with
the Nguyen et al.’s method. Two innovative descriptors named
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FIGURE 1 An example colour fundus image from the DRIVE dataset [8]
(left) and it is manually segmented vessel by the expert grader (right)

local Haar pattern (LHP) and modified speeded up robust fea-
tures (mSURF) are also proposed.

2 LITERATURE REVIEW

Over the past two decades, plenty of researches are conducted
for segmenting retinal blood vessels. The state-of-the-art meth-
ods in the literature can be broadly divided into supervised and
unsupervised methods. Supervised methods require a set of
training images that are manually labelled by specialists [8]. The
rule of vessel extraction is learned on the basis of gold standard
by these methods. Unsupervised methods do not require any
annotated label. Most of the unsupervised methods are solely
based on basic image processing techniques such as mathemat-
ical morphology, matched filters, thresholding, vessel tracing,
region growing, multiscale purposes etc.

Among unsupervised methods, Wang et al. [10] proposed a
segmentation method based on a matched filter. In this method,
vessels are enhanced using matched filtering with multiwavelet
kernels. The multiscale hierarchical decomposition method is
used to remove noise and locate the vessel. For detecting the
edges of blood vessels borders, wavelet kernels are successfully
applied in DRIVE and STARE datasets. The method can seg-
ment the vessels in the pathological lesion., however, thin or
small vessels can be affected by fragmentation. Das et al. [11]
proposed a thresholding-based technique for segmenting reti-
nal vessels. The paper includes three steps for segmentation: (1)
pre-processing; (2) segmentation; (2) post-processing. For pre-
processing, contrast limited adaptive histogram equalization is
used which enhances the quality of the retinal image. Mean-
c clustering method is used for segmentation to extract reti-
nal blood vessels. Mathematical morphology is used for post-
processing which removes the isolated pixels. The method is
prone to produce false segmentation in the presence of patho-
logical lesions and in optic disc region. Ricci et al. [12] proposed
a segmentation method based on basic line operators, which is
one of the most significant unsupervised methods. Line detec-
tion is used to determine the discontinuity of the intensity value
of an image. The green channel is extracted from the original
retinal image. Because the green channel is less noisy and has
better illumination. The red or blue channel is more prone to

FIGURE 2 Pathology and false vessel detection. First column contains the
portions of optic disc and pathological lesions in original image [8] and second
column contains the segmented false vessels [9]

noise. They have also poor illumination than the green channel.
The basic line detector deals with the inverted green channel.
In the inverted green channel, the vessels appear brighter than
the background. A window of size W × W is taken for each
pixel position. The method has limitations such as it has poor
segmentation results in the presence of central vessel reflex,
at bifurcation and crossover regions, the possibility of merg-
ing close vessels. For solving the limitations of Ricci et al.’s
method, Nguyen et al. proposed multi-scale detection method
in [9]. The method does not require images to be pre-processed
prior to segmentation. The Method efficiently segments blood
vessels:

(i) In the presence of central vessel reflex.
(ii) At bifurcation and crossover regions.
(iii) In presence of merging of close vessels.

However, one major shortcoming of the method is that it
cannot segment the blood vessels accurately, especially in the
pathology regions as depicted in Figure 2.

Among supervised methods, Yang et al. [13] proposed a
method based on mathematical morphology and a fuzzy clus-
tering algorithm. Mathematical morphology is used for pre-
processing which increases the smoothness and strength of the
retinal image. Then, the fuzzy clustering algorithm is applied
to the pre-processed image for the segmentation of the reti-
nal images. To reduce the noise and weak edges purification is
done. Wang et al. [14] proposed a blood vessel segmentation
method based on the feature and ensemble learning. Convo-
lutional neural network (CNN) is used for extracting trainable
hierarchical feature and ensemble RFs work as a trainable clas-
sifier. Marin et al. [15] proposed a method based on NN. A 7D
feature vector is extracted for each pixel of the pre-processed
retinal images, which is then used to classify the pixel as vessel
or not.

In [16], Somoro et al. proposed a deep learning model
based on CNN with dice loss function. They implemented
the CNN relying upon a modified version of U-Net called
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FIGURE 3 The proposed system architecture. Operations shown within the dotted box are performed pixel-wise

variational auto-encoder, where they replaced all pooling layers
with progressive convolution and deeper layers. Guo et al.
[17] presented a multi-scale deeply supervised convolutional
neural network with short connection (BTS-DSN) model,
where the bottom-top short connection transfers low-level
semantic information to high level, and bottom-top short
connection transfers mostly structural information to low level.
Fusion of multi-level features enables their model to perform
well in cross-training experiments. Jiang et al. [18] proposed a
supervised method based on a pre-trained fully convolutional
AlexNet through transfer learning to perform pixel-to-pixel and
end-to-end semantic segmentation. After pre-processing the
whole training and test set, each image was augmented by slicing
it to 50 × 50 patches. Each patch represents whether the cor-
responding is vessel or non-vessel and utilized to fine tune the
AlexNet in the training phase. In the testing phase, the resulted
patches are merged into a full-sized segmented image. The
method was experimented in four publicly available datasets
extensively. Considering highly imbalanced ratio between thick
and thin vessels, Yan et al. [19] proposed a three-stage deep
learning model to segment retinal vessel accurately. They
explicitly annotated thick vessels and thin vessels that were used
in computing the cost function to be used in backpropagation
step of each of three stages separately. It helped thick vessels
to detect vessels with a simple model called ThickSegmenter
and thin vessels with a FCN called ThinSegmenter. However,
the ThinSegmenter results in generating thin vessels thicker
than their usual size. The FusionSegmenter combines these
two models to generate more accurate segmentation of the
original image. Rammy et al. [20] proposed a conditional patch-

based generative adversarial network model to address the
vessel segmentation issues in retinal images. In their two-stage
model, they train a deep generative model to generate vessel
maps which are later applied to the discriminator along with
ground truth vessel masks. The discriminator discriminates the
actual and generated vessel maps until it confuses both the
input.

While supervised methods are generally found to perform
better than unsupervised methods, this is not always the case,
especially when the training data is limited [7]. Scarcity of
datasets with ground truth is a fact in retinal imaging; that possi-
bly explains why best performing supervised methods in vessel
segmentation still performs poor in optic disc region and/or
strong contrasted pathology regions [7]. Combination of basic
image processing techniques and supervised approaches are
often preferred [7].

3 METHODOLOGY

The proposed method augments the multiscale line detector of
Nguyen et al. [9] by incorporating a supervised step with it.
Vessel segmentation is performed in 2 steps as shown in Fig-
ure 3. In the first step a preliminary segmentation of the ves-
sels is performed using Nguyen et al.’s [9] method, which is an
unsupervised approach. In the second step elimination of the
falsely classified vessels are performed using supervised meth-
ods. Two innovative descriptors are proposed to describe the
pixels of interest. Three different classifiers are trained to deter-
mine a pixel as true vessel or not.
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FIGURE 4 All of the 32-pixel patterns used to compute LHP descriptor

3.1 Local Feature Descriptors

Descriptors named LHP, and mSURF are proposed to describe
pixel of interests in the context of retinal imaging. Both LHP
and mSURF rely upon Haar patterns while computing the
descriptors, however, they vary on how the patterns are utilized
and feature vectors are computed.

3.1.1 LHP

LHP is inspired by the earlier works of Saha et al. [21] and
Calonder et al. [22]. In [21, 22], it was shown that image patches
can be effectively described based on a small number of pair-
wise intensity comparisons defined within the patch. Saha et al.
used Haar patterns to define groups for intensity comparisons.
Randomly selected pixel pairs are used by Caholonder et al. for
intensity comparisons. Both methods produce a binary value (0
or 1) out of each comparison, which are finally concatenated
to form the binary vector describing the patch. In this work
instead of just comparing the intensity to produce 0 or 1, we cal-
culate and store the actual intensity difference, which is to some
extent similar to SURF [23]. In order to perform pixels group-
ing, we define a set of 32 patterns (represented in Figure 4) in
this work. These patterns are reminiscent of Haar basis function
[22].

A patch p of size 32 × 32 is considered around the pixel of
interest, and a vector of size 128 bytes is calculated. Each byte
of the vector is computed based on the intensity difference of
two-pixel groups as defined below.

T (p, X, Y ) = ĪX − ĪY , (1)

Here, ĪX and ĪY represent the mean intensities of two different
pixel groups X and Y belonging to the patch p.

FIGURE 5 Decomposition of the main patch into sub-patches

The 128 bytes vector is generated in three stages and that
defines the LHP descriptor. In the first step all the patterns in
the set 𝜉 are used to perform intensity comparisons.

In the third step each of the subpatches is further divided into
four equal sized subpatches as shown in Figure 5. A subset 𝜗 of
set 𝜂 is used for comparisons in the third step. Depending on
Haar patterns in the initial set 𝜉, two different versions of the
LHP descriptor are devised.

LHP-32
Uses all of the 32 patterns shown in Figure 4 to define the initial
set 𝜉. First 16 of these patterns are then used to define 𝜂 in the
second step. First four patterns are used to form 𝜗 in the third
step.
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LHP-16
Uses first 16 of the of the 32 patterns in Figure 4 to form the
initial set 𝜉. All of these 16 patterns are also used in the second
step. The third step uses the first three of these 16 patterns.

3.1.2 mSURF

In order to extract useful information surrounding the pixel,
mSURF relies on Haar wavelet responses likewise in [23]. How-
ever, indifferent to [23], here wavelet responses are computed
at one scale, which is determined by the Euclidean distance
between the optic disc and macula centres. At the same time,
instead of using local gradient information for each keypoint or
pixel of interest, a global orientation is used. The global orienta-
tion is computed based on the optic disc and macula centres.

Orientation Assignment
Prior to computing Haar wavelet responses, we identify a repro-
ducible orientation of the image, which is then used to rotate
the image. For that purpose, we first compute the centres of the
optic disc and macula relying on the method proposed by Rust
et al. in [24]. Let, (xM , yM ) and (xOD, yOD) are the coordinates
of the optic disk and macula center respective, then the repro-
ducible orientation of the image 𝜃 is computed as,

𝜃 = tan−1

(
yM − yOD

xM − xOD

)
.

In the second step the patch p is divided into four equal sized
subpatches of 16 × 16, a subset 𝜂 of the pattern set 𝜉 are used.

Image Resizing
Prior to computing wavelet responses we also resize the image.
We compute the Euclidean distance,

Ei =

√
(xM − xOD)2 + (yM − yOD)2

between the optic disc and macula centres. Then the image
resizing factor, s is determined as the ratio of Ei and Eavg, where
Eavg is the average Euclidean distance between optic disc and
macula and centres computed on 1000 selected images from
EyePACS (http://www.eyepacs.com/).

Descriptor Components
A square region of size 36 × 36 around the pixel of interest
is considered. This region is further split up into smaller 4
× 4 square sub-regions. For each sub-region, we compute
Haar wavelet responses in the X and Y directions as illus-
trated in Figure 7. The wavelet responses and their absolute
values are summed up over each subregion and a 4D vector
v = (

∑
dx ,

∑
dy,

∑|dx|,∑|dy|) is formed, where dx , dy are
respectively the wavelet responses in the X and Y directions
as depicted in Figure 6. The responses are computed at 3 × 3
regularly spaced intervals using a 4 × 4 window. The responses
are then weighted with a Gaussian of σ = 12 centred at the

FIGURE 6 Haar wavelets

FIGURE 7 Feature description process of mSURF

pixel of interest. Vectors computed over all the sub-regions
are then concatenated to form the descriptor of length 64 to
represent the pixel. The descriptor is finally normalized to have
unit length.

3.2 Classifiers

The feature vectors of interest points in fundus images are
trained and tested in three well-known classifiers.

3.2.1 Random Forest Classifier

A random forest classifier [25] is trained to classify a pixel as a
vessel or not. The training algorithm for random forests applies
the general technique of bagging, to tree learners. Given a train-
ing set X = x1, x2,… xn with responses Y = y1, y2,… yn, bag-
ging repeatedly (K times) selects a random sample with replace-
ment of the training set and fits trees to these samples:

For k = 1 to K:

(i) Sample, with replacement, n training examples from X, Y;
call these Xk, Yk.

(ii) Train a classification or regression tree fk on Xk, Yk.

After training, predictions for unseen samples x’ are made
by taking the majority vote in the case of classification trees
(Figure 8).

http://www.eyepacs.com/
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FIGURE 8 Random forest classifier to classify a pixel as a true vessel or
not

FIGURE 9 Optimal hyperplane in SVM

Descriptors are computed for all the pixels determined as
vessels by Nguyen et al.’s method [9]. Ground truth labels of
these pixels determined by experienced grader were made avail-
able while training the classifier. Once trained, it classified a
given pixel as vessel or not vessel depending on its described
feature vector.

3.2.2 Support Vector Machine

Support vector machine (SVM) is usually a non-probabilistic lin-
ear classification (or regression) method that classifies tuples
by constructing optimal linear separating hyperplane. Even
though it is possible to find a number of hyperplanes to
separate the data points into two-component, the optimal
hyperplane always maximizes the margin of the training sam-
ples as shown in Figure 9 and is not too close to the data
points which will be noise sensitive and test tuples might be
misclassified.

Training
(i) If non-linear data, map data into high dimensional space

using selected kernel function, thus data become linear.
(ii) Select the Support Vectors from both classes (one class is

type +1, another is type -1).
(iii) Execute the training algorithm and obtain the parameters

ai from augmented support vectors.

(iv) Find the weight vector w and offset b using parameters ais

and augmented support vectors and construct the hyper-
plane using the linear discriminant function, y = wx + b.

Classification
(i) If non-linear SVM, map test data using same Kernel func-

tion into that same space.
(ii) Find the appropriate class using weight vector w and

(mapped) data comparing with offset b.

3.2.3 Adaboost

Adaptive boosting, shortly known as Adaboost, is an itera-
tive boosting approach introduced by Freund and Schapire.
The major objective of this approach to put emphasis on the
instances that are hard to classify. At first, every instance has the
same weight that after every iteration increase if the instances
are misclassified and decrease if the instances are correctly clas-
sified [26].

The Adaboost algorithm is explained below where inputs are
D, a set of d class-labelled training tuples; k, the number of iter-
ations; and a classification learning scheme. After the iterations
are completed a composite model is created.

Method
(i) Initialize the weight of each tuple in D to 1/d

(ii) for i = 1 to k:
(iii) sample D with replacement according to the tuple weights

to obtain Di

(iv) use training set Di to compute a model Mi

(v) calculate error(Mi) with the following equation:

error (Mi ) =
d∑

j=1

wj × err (Xj )

(vi) if error(Mi) > 0.5 then go back to step 3
(vii) for each correctly classified tuple Di, update it by multi-

plying the weight of the tuple by error(Mi)/(1- error(Mi))

(viii) normalize the weight of each tuple
(ix) endfor

To use the ensemble to classify tuple X, initialize the weight
of each class to 0. For each classifier compute

wi = log
1−error (Mi )

error (Mi )
and = Mi (X ) , then add wi to the weight

of class c. Finally, the class with the highest weight will be return
as the class of tuple X.

4 EXPERIMENTS AND RESULTS

Experiments are conducted on publicly available colour fundus
image datasets named DRIVE, STARE and CHASE_DB1.
All of these datasets are developed to evaluate the perfor-
mance of vessel segmentation methods and contain verified
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vessel structure ground truth made by expert ophthalmol-
ogists. The proposed method has been compared with the
state-of-the-art supervised and unsupervised methods. A
summary of the datasets and evaluation protocol is provided
below.

4.1 Datasets

Among publicly available datasets for retinal fundus images,
DRIVE, STARE and CHASE_DB1 are some of the significant
ones.

4.1.1 DRIVE

DRIVE dataset was collected from a diabetic retinopathy
screening program in Netherlands [8]. Canon CR5 non-
mydriatic 3 CCD camera with a 45◦ field of view (FOV) was
used to acquire the images. The images are 768 × 584 pixels
in dimensions, have 8 bits per colour plane and provided in
jpeg. There are 40 images in total and among them, 33 do not
have any pathology and the rest show early diabetic retinopa-
thy symptoms. Images are provided in training and test sets.
Each of the set contains 20 images. The training set contains
four pathological images and the test set contains three patho-
logical images. Vessels are segmented by two expert human
graders.

4.1.2 STARE

STARE [27] contains 20 labelled images, of which 10 have
pathology and 10 are normal. There is no separate set of training
and test images in the STARE dataset. The images are captured
using Tapcon [27] TRV-50 fundus camera at a 35◦ FOV. The
images are 605 × 700 pixels, and have 8 bits per colour chan-
nel. Two expert observers manually segmented the vessels in
the images.

4.1.3 CHASE_DB1

CHASE_DB1 contains a total of 28 fundus images acquired
from multiethnic school children [28]. A hand-held Nidek NM-
200-D fundus camera is used to capture the images at a 30◦ field
of view FOV. The size of each image is 960 × 999 pixels. Two
individual observers labelled the images. No specific pathology
information is provided.

4.2 Performance Measurement

Every pixel is classified either as vessel or non-vessel. There are
four possible classification results: (1) true positive and (2) true
negative (3) false positive and (4) false negative [29]. True pos-
itive (TP) refers to a pixel classified as a vessel in both in the

ground truth and the segmented image, while false positive (FP)
refers to a pixel is classified as a vessel in the segmented image
but it is recognized as a non-vessel in the ground truth. Sensi-
tivity (SE), specificity (SP), accuracy and area under the curve
(AUC), define mathematically as below, are used to evaluate the
performance of the methods.

Sensitivity =
TP

TP + FN
.

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN
.

The conventional AUC is calculated from a number of oper-
ating points [29]. Normally, AUC is used to evaluate a balanced
data classification problem. But blood vessel segmentation is an
unbalanced data classification problem as there are fewer vessel
pixels than background pixels in a retinal image [29]. The per-
formance of vessel segmentation can be evaluated by applying
the following formula [29],

AUC =
Sensitivity + Specificity

2
.

4.3 Results

4.3.1 Qualitative Results

Figure 10 illustrates two images from DRIVE dataset, and other
two from STARE and CHASE_DB1 datasets respectively. The
first, second, third and fourth column show original fundus
images, images generated after applying multi-scale line detec-
tion operation by Nguyen et al. [9], images generated by the pro-
posed method with random forest classifier (RFC) with LHP-16
and mSURF respectively. Random Forest Classifier depicts the
best average results with these two descriptors and they are cer-
tainly better than Nguyen et al.’s performance. Visual perfor-
mance of any classifier with LHP-32 is almost identical to the
same classifier and LHP-16 combination as shown in Figure 11,
consequently, left from comparing with other methods in
Figure 10.

4.3.2 Quantitative Result

Table 1 illustrates performance of the proposed method’s
best two classifier and feature descriptor combination com-
pared with the state-of-the-art methods in DRIVE and STARE
datasets. We performed 10-fold cross validation to evaluate the
performance of the proposed method.

As of the promise of the proposed method’s to segment reti-
nal vessels in present of pathological regions, it performs sig-
nificantly better than other methods in terms of sensitivity and
shows around 2% and 3% more sensitivity than second best
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FIGURE 10 Fundus image, ground truth, multiscale segmentation, segmentation by RFC with LHP-16 and mSURF from left to right

FIGURE 11 DRIVE image (08_test), segmented image by RFC with LHP-16 and LHP-32 respectively

method in DRIVE and STARE datasets respectively. The RFC
and mSURF combination of the method depicts the best per-
formance in terms accuracy among the state-of-the-art meth-
ods, whereas the SVM and LHP-16 stays on top in terms of the
area under curve and sensitivity.

Performance evaluation on DRIVE
The descriptor’s performance together with RFC as in Table 2,
it appears that the performance of LHP-16 and LHP-32

was quite similar in accuracy, sensitivity, specificity and AUC.
In addition, the accuracy of the model with the descriptors
including mSURF was also identical and it was slightly more
than 96%. The model illustrates 1% and 3% more sensitivity
with LHP-16 and mSURF respectively than the sensitivity
with LHP-32 which was 71.01%. Moreover, the RFC model
with mSURF descriptor shows the best AUC value (85.88%)
among the three descriptors. Though all three of the descrip-
tors depicts almost similar performance, the performance of
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TABLE 1 Comparison of performance with the state-of-the-art on DRIVE and STARE datasets

DRIVE STARE

Methods Accuracy AUC SE SP Accuracy AUC SE SP

Supervised methods

Lupascu et al. [30] 0.959 – 0.720 – – – – –

Marin et al. [15] 0.945 0.843 0.706 0.980 0.952 0.838 0.694 0.982

Roychowdhury et al. [31] 0.952 0.844 0.725 0.962 0.951 0.873 0.772 0.973

Jiang et al. [18] 0.959 0.848 0.712 0.983 0.965 0.881 0.782 0.979

Somoro et al. [16] 0.948 0.844 0.739 0.956 0.947 0.855 0.748 0.962

Unsupervised methods

Annunziata et al. [32] – – – – 0.956 0.849 0.731 0.984

Zhao et al.[33] 0.948 – 0.735 0.979 0.951 – 0.719 0.977

Budai et al. [34] 0.957 0.816 0.644 0.987 0.938 0.781 0.580 0.982

Nguyen et al. [9] 0.941 – – – 0.932 – – –

Proposed

RFC + mSURF 0.961 0.859 0.736 0.982 0.960 0.889 0.806 0.973

SVM + LHP-16 0.958 0.867 0.786 0.973 0.953 0.897 0.831 0.963

TABLE 2 Performance on DRIVE dataset

Classifiers Descriptors Accuracy Sensitivity Specificity AUC

RFC LHP-16 0.9609 0.7173 0.9835 0.8512

LHP-32 0. 9601 0.7101 0. 9828 0.8465

mSURF 0.9606 0.7355 0.9820 0.8588

SVM LHP-16 0.9581 0.7578 0.9765 0.8672

LHP-32 0.9575 0.7575 0.9756 0.8667

mSURF 0.9521 0.6230 0.9826 0.8028

AdaBoost LHP-16 0.9601 0.6846 0.9851 0.8586

LHP-32 0.9603 0.6852 0.9853 0.8353

mSURF 0.9511 0.5951 0.9832 0.7892

mSURF can be considered as a slightly better one. Regarding
the SVM model, the LHP-16 and LHP-32 descriptors perform
the same in all four criteria. However, these two descriptors
outperform mSURF in accuracy, sensitivity and AUC and
they perform at around 75.8% sensitivity and 86.7% AUC
which are 13% and 6% more than mSURF in sensitivity
and AUC respectively. mSURF performs slightly well only in
specificity. Interestingly in AdaBoost, the descriptors depict
almost identical performance to SVM. The accuracy, sensitivity,
specificity and AUC of both LHP-16 and LHP-32 are around
96%, 68.5%, 98.5% and 85.5% respectively which is around
1%, 9%, 0.2% and 6% more than that of mSURF respectively.
Overall, SVM with LHP-16 descriptor performs the best in
the aspect of all four criteria and computation complexity. The
standard deviation of the accuracy of the proposed method was
respectively 0.003 (for RFC+mSURF) and 0.005 (for SVM and

TABLE 3 Performance on STARE dataset

Classifiers Descriptors Accuracy Sensitivity Specificity AUC

RFC LHP-16 0.9593 0.7866 0.9735 0.8801

LHP-32 0. 9587 0. 7763 0. 9725 0.8744

mSURF 0.9601 0.8058 0.9726 0.8892

SVM LHP-16 0.9531 0.8313 0.9628 0.8970

LHP-32 0.9523 0.8284 0.9626 0.8955

mSURF 0.9576 0.7253 0.9763 0.8508

AdaBoost LHP-16 0.9584 0.7605 0.9752 0.8679

LHP-32 0.9579 0.7521 0.9750 0.8636

mSURF 0.9512 0.6557 0.9757 0.8157

LHP-16). For Nguyen et al.’s method the standard deviation
was 0.005.

Performance evaluation on STARE
As in Table 3, where the performance of the three descrip-
tors with RFC are summarized, LHP-16 and LHP-32 exhibit
similar results as it was previously observed in DRIVE dataset.
They show the accuracy, sensitivity, specificity and AUC around
95.85%, 78.2%, 97.3% and 87.7% respectively. Though the
accuracy and specificity of the model with mSURF are not
significantly different from the previous two, the sensitivity
and AUC are around 1% and 2% higher than the previous
two. Similarly, LHP-16 and LHP-32 with the SVM model per-
form at the accuracy, sensitivity, specificity and AUC of 95.3%,
83%, 96.25% and 89.5% respectively. However, for mSURF
sensitivity drops by 10%, consequently, AUC drops by 4%.
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TABLE 4 Performance on CHASE_BD1 dataset

Classifiers Descriptors Accuracy Sensitivity Specificity AUC

RFC LHP-16 0.9513 0.7418 0.9669 0.8544

LHP-32 0. 9498 0. 7434 0. 9653 0. 8544

mSURF 0.9555 0.7630 0.9693 0.8662

SVM LHP-16 0.9401 0.7911 0.9516 0.8714

LHP-32 0.9393 0.7912 0.9521 0.8717

mSURF 0.9428 0.6172 0.9692 0.7932

AdaBoost LHP-16 0.9539 0.6921 0.9731 0.8326

LHP-32 0.9535 0.6862 0.9734 0.8298

mSURF 0.9395 0.5796 0.9667 0.7732

TABLE 5 Comparison of performance on CHASE_DB1

Methods Accuracy Sensitivity Specificity AUC

Nguyen et al. 0.9433 0.7625 0.9602 0.8613

RFC+ mSURF 0.9555 0.7630 0.9693 0.8662

SVM + LHP-16 0.9401 0.7911 0.9516 0.8714

Regarding AdaBoost, the descriptors illustrate performance
commensurate with previous observations, although the per-
centages are quite different. The accuracy of LHP-16, LHP-32
and mSURF with AdaBoost are 95.84%, 95.79% and 95.12%
respectively. Their sensitivity is 76.09%, 75.24% and 65.62%
respectively, yet their specificity stays around 97.5% while the
AUC varies from 86.79% with LHP-16 to 81.57% with mSURF.
The standard deviation of accuracy of the proposed method was
respectively 0.011 (for RFC+mSURF) and 0.018 (for SVM +
LHP-16). For Nguyen et al.’s [9] model the standard deviation
was 0.017.

Performance evaluation on CHASE_DB1
As in Table 4, the accuracy, sensitivity, specificity, area under
the curve of the method for CHASE_DB1 dataset for LHP-
16 and LHP-32 are identical and they are around 95.1%, 74.3%,
96.69% and 85.44% with RFC, 94.01%, 79.12%, 95.21% and
87.15% with SVM, and 95.4%, 69%, 97.3% and 83% with
AdaBoost respectively. Moreover, the accuracy of mSURF is
95.55%, 94.28% and 93.95 with RFC, SVM and AdaBoost
respectively and the sensitivity drops from 76.3% to 57.96%,
although the specificity remains a pretty average of over 96% in
all three classifiers with mSURF. However, the AUC of the mod-
els with mSURF in CHASE_DB1 is the lowest of all datasets
and they are 86.62%, 79.32% and 77.32% with RFC, SVM and
AdaBoost respectively.

Interestingly, it appears that mSURF with RFC performs
best in this dataset. As appeared in Table 5, the Random Forest
Classifier and mSURF combination of the proposed method
also performs better than Nguyen et al. [9] at every four aspects
of the comparison. The standard deviation of accuracy of the
proposed method was respectively 0.038 (for RFC+mSURF)

and 0.056 (for SVM + LHP-16). For Nguyen et al.’s [9] model
the standard deviation was 0.058.

5 DISCUSSIONS AND CONCLUSION

In this paper, we proposed an innovative approach to segment
retinal blood vessels in colour fundus photographs that com-
bines both supervised and unsupervised methods. In the unsu-
pervised part, we have used the multi-scale line detector for a
crude segmentation of blood vessels. The supervised technique
then applied to remove falsely classified vessels from the ini-
tial segmentation. Two innovative descriptors named LHP and
mSURF is proposed to describe keypoints in retinal imaging
context. In principal mSURF descriptor has two benefits over
normal SURF. Firstly, since the mSURF descriptor is computed
on a scale rather than multiple scales, it is faster than SURF. Sec-
ondly, mSURF, in principle should be more discriminative than
normal SURF, as it has the same length like SURF, and is able to
compute more information about the patch for being focused
on a single scale. In practical experiment, we found that mSURF
gives about 5% improvement in computational speed over nor-
mal SURF, however, we did not observe are any differences in
the discrimination power between SURF and mSURF. LHP also
relies on Haar like patterns, however, generates a binary descrip-
tor. Three different classifiers named Random Forest, SVM and
AdaBoost are independently trained to classify vessel and non-
vessel pixels.

The proposed method has been compared against other
methods in terms of sensitivity, specificity, accuracy and AUC.
Three publicly available datasets that are purposed designed
to evaluate the performance of vessel segmentation methods
and namely DRIVE, STARE and CHASE_DB1 have been
used for experimental evaluation. The proposed method has
been found to outperform other state-of-the-art methods. On
DRIVE dataset the proposed method shows an accuracy of
96.1%, which is about 2% better than the state-of-the-art
Nguyen et al.’s method, about 1% better than state-of-the-art
supervise methods. On STARE dataset the proposed method
achieves an accuracy of 96% which is about 1–2% better than
other methods in comparison. On CHASE_DB1 dataset also
the proposed method is found to be 2% more accurate than
state-of-the-art Nguyen et al.’s method. The proposed method
shows better or at least similar sensitivity, specificity and AUC
in comparison to other methods, which is equally applicable for
all the datasets.

While generating LHP, there are an enormous number of fea-
ture combinations and patch decomposition strategies that are
feasible. In this work, we have explored 2 different feature com-
binations and patch decomposition strategy. In future, we would
like to explore, other decomposition strategies, and also want to
employ machine to determine optical set of patterns [35].
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